The dual PI3K/mTOR inhibitor NVP-BEZ235 enhances nab-paclitaxel antitumor response in experimental gastric cancer
نویسندگان
چکیده
Gastric cancer is the second most common cause of cancer-related deaths worldwide. Taxanes have shown therapeutic effects against gastric cancer while also activating the PI3K/mTOR signaling pathway. We investigated the effects of NVP-BEZ235 (BEZ235), a novel dual PI3K/mTOR inhibitor, alone and in combination with nanoparticle albumin-bound (nab)-paclitaxel in experimental gastric cancer. Cell proliferation and protein expression were measured by WST-1 assay and immunoblotting. Tumor growth and survival studies were performed in murine xenografts. Phosphorylated mTOR and 4E-BP1 levels were elevated in gastric cancer cells and tumor tissues by nab-paclitaxel. BEZ235 effectively inhibited cell proliferation in vitro and provided additive effects in combination with nab-paclitaxel. Furthermore, BEZ235 blocked the activated PI3K/mTOR pathway either alone or in combination with nab-paclitaxel in gastric cancer cells. BEZ235 and nab-paclitaxel caused an increase in PARP-1 and caspase-3 cleavage. Net local tumor growth inhibition for the BEZ235, nab-paclitaxel and BEZ235+nab-paclitaxel groups was 45.1, 77.9 and 97% compared to controls. The effects of therapy on intratumoral proliferation and apoptosis corresponded with tumor growth inhibition data. BEZ235 also caused a decrease in phospho-mTOR and phospho-Akt in tumor tissue lysates. Median animal survival (controls, 23 days) was 26.5 days after BEZ235 (p=0.227), 90.5 days after nab-paclitaxel (p=0.001) and 97 days in the BEZ235+nab-paclitaxel combination treatment group (p=0.001). Our findings suggest that BEZ235 exerts some antitumor effects against gastric cancer and enhances effects of nab-paclitaxel through inhibition of cell proliferation and modulation of the PI3K/mTOR pathway. This approach may represent a promising combination targeted therapy for gastric cancer.
منابع مشابه
Autophagy inhibition enhances colorectal cancer apoptosis induced by dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235
Phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) signaling pathway performs a central role in tumorigenesis and is constitutively activated in many malignancies. As a novel dual PI3K/mTOR inhibitor currently undergoing evaluation in a phase I/II clinical trial, NVP-BEZ235 indicates a significant antitumor efficacy in diverse solid tumors, including colorectal cancer (CR...
متن کاملNVP-BEZ235, a dual PI3K/mTOR inhibitor synergistically potentiates the antitumor effects of cisplatin in bladder cancer cells
The PI3K/Akt/mTOR pathway is a prototypic survival pathway and constitutively activated in many malignant conditions. Moreover, activation of the PI3K/Akt/mTOR pathway confers resistance to various cancer therapies and is often associated with a poor prognosis. In this study, we explored the antitumor effect of NVP-BEZ235, a dual PI3K/mTOR inhibitor in cisplatin-resistant human bladder cancer c...
متن کاملPI3K and mTOR inhibitor, NVP-BEZ235, is more toxic than X-rays in prostate cancer cells
Background: Radiotherapy and adjuvant androgen deprivation therapy have historically been the first treatment choices for prostate cancer but treatment resistance often limits the capacity to effectively manage the disease. Therefore, alternative therapeutic approaches are needed. Here, the efficacies of radiotherapy and targeting the pro-survival cell signaling components epidermal growth fact...
متن کاملTargeting PI3K/mTOR Signaling Displays Potent Antitumor Efficacy against Nonfunctioning Pituitary Adenomas.
PURPOSE Novel therapeutic approaches are needed to improve the postoperative management of residual nonfunctioning pituitary adenomas (NFPA), given their high relapse rate. Here, we evaluated the antitumor efficacy of the dual PI3K/mTOR inhibitor NVP-BEZ235 in the only available model of spontaneous NFPAs (MENX rats). EXPERIMENTAL DESIGN Organotypic cultures of rat primary NFPAs were incubate...
متن کاملLevels of p27 sensitize to dual PI3K/mTOR inhibition.
Constitutive activation of the phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR signaling cascade occurs in a variety of human malignancies, where it sustains tumor cell proliferation and survival. Pharmacologic blockade of this pathway exerts antineoplastic activity by triggering apoptosis and/or cell-cycle arrest. Pituitary adenomas show activation of the PI3K/AKT/mTOR pathway, but only a fracti...
متن کامل